IPD 2400

The following tables contain information on measured current consumption as well as calculated heat dissipation during what we see as the most extreme sustained normal operation (1/8 rated power).

IPD 2400										
Level	Load	Rated power		Mains voltage	Line current	Watt *1)			Thermal Dissipation	
				VAC	IAC *2)	In	Out	Dissipated	BTU/hr	kCal/hr
Standby w. remote Power Off.				230	0.088	7.10	0	7	24	6
				120	0.0981	6.45	0	6	22	6
				100	0.11	6.45	0	6	22	6
Power on, Idling				230	0.229	28.20	0	28	96	24
				120	0.383	29.20	0	29	100	25
				100	0.44	27.40	0	27	94	24
Pink Pseudo Noise (1/8)	16 Ω / Ch.	300	× 2	230.0	1.1	127	75	52	178	45
				120.0	1.7	127	75	52	177	45
				100.0	1.8	114	75	39	134	34
	8 Ω / Ch.	600	x 2	230.0	1.9	218	150	68	233	59
				120.0	3.0	229	150	79	270	68
				100.0	3.8	239	150	89	303	76
	4 Ω / Ch.	1200	x 2	230.0	3.3	431	300	131	448	113
				120.0	5.3	455	300	155	530	133
				100.0	6.1	451	300	151	514	129
	2 Ω / Ch.	800	x 2	230.0	2.3	279	150	129	439	111
				120.0	3.4	260	150	110	376	95
				100.0	4.1	258	150	108	368	93

*1) The amplifier's PSU operates as a non-resistive load, so the calculation "Volts x Amps = Watts" would not be correct. Instead, measured and specified here is what is known as the "Active Power" in the amplifier providing useful, real-world values of power consumption and heat dissipation.

*2) Current draw figures measured at 230 V. as well as 120 V. The efficiency is similar, but not identical for the two scenarios. The efficiency for 100 V mains is very similar to that of 120 V.

